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ABSTRACT 

This paper presents a formulation for an integrated model combining a social force based pedestrian 

movement including collision avoidance and a stochastic infection dynamics framework to evaluate the spread of 

infectious diseases in air transportation medium. We apply the multiscale model for two infectious diseases (1) Ebola 

and (2) SARS pathogens with different transmission mechanisms and compare the pattern of propagation during 

airplane boarding and deplaning at the airport gate. The objective of this analysis is to assess the influence of pedestrian 

movement on infection spread at an airport departure lounge. 

INTRODUCTION 

Air transportation medium and facilities are evolving exponentially to meet the necessity of connection, 

exchange and travel in an increasingly interconnected world. In addition to its many benefits, commercial air travel 

also enables rapid transmission of infectious diseases across the globe. Travelers are in close proximity to each other 

and are susceptible to infection spread during different phases of air travel. Pedestrian movement within airport is key 

to understanding and estimating the casual contacts between passengers at the airport and modeling the same can 

provide useful insight into disease spread.  

Movement of passengers in airports is a special case of a more general problem of pedestrian movement. 

This problem has been addressed using several approaches such as particle dynamics or social force models 1, 2, models 

based on cellular automata 3, fluid flow models 4, and queuing based models 5.  Of these different approaches, social 

force models have specific advantages for studying passenger movement and contacts because each passenger is 

modeled individually and moves continuously which enables computing the individual trajectory contacts between 

pedestrians.  
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Several studies use these generic approaches to study the pedestrian movement at airports especially from 

the viewpoint of airport operations and reduction of the turnaround time of airplanes at terminals. Schultz et al. (2006) 

model the intuitive behavior of airport travelers under emergency situation by a cellular automaton model.9 In this 

model, the floor area is subdivided into small partitions where pedestrians may switch positions with neighboring 

spots based on a probabilistic distribution.6 Several other investigators used agent-based models to model pedestrian 

motion in and passenger flow in airport terminals.7,8 Other studies such as that by Lin et al. (2014) study the flow of 

pedestrians to their destinations by optimizing the guiding signs.9 Pedestrian movement in airports is peculiar because 

it involves a series of nondiscretionary as well as discretionary activities. For example, prior to their scheduled flights, 

travelers fulfill the trip requirements starting from check-in, security and boarding. Once these processing steps are 

completed, they are often involved in individual or collective discretionary activities such as dining and shopping at 

the departure terminal.10,11 The airport environment and building layout have a great influence on the passengers 

movements, choice and perception of activities preference over a set of alternatives.9,12 This uncertainty creates 

additional challenges in modeling the pedestrian motion at airports.  

Air travel brings together people from different geographic regions with different levels of vulnerability and 

receptivity due to variations in immunity, ethnic background, and intervention usage across geographic areas, 

consequently, airports and airplanes are potential, prime locations for infection spread.13 During the Ebola epidemic 
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cases." Proceedings of Internation Council of the Aeronautical Sciences (2006). 
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in 2014, models estimate that without travel restrictions, 7.17 infectious passengers per month would depart from the 

highly affected countries Liberia, Sierra-Leone and Guinea, to various destinations around the globe.14 Transmission 

of Severe acute respiratory syndrome (SARS) virus via air travel has been recorded, in 2003, on three carries; Among 

681 passengers, 23 tested positive for illness.15 Several other diseases like tuberculosis, norovirus etc, have been 

transmitted through air travel.16-19 In 1994, an infective with multidrug-resistant tuberculosis was onboard flights from 

Honolulu to Baltimore, passing by Chicago, transmitted the illness to passengers seated in the vicinity.20 Three factors 

are known to influence the contagion spread: the infectivity of the index infectious, the flight duration and the number 

of contacts within the critical radius of infection.20 The number of contacts is critically dependent on the pedestrian 

movement within airplanes and at airport lounges. Given the preponderance of infection spread through air travel, it 

is essential to identify air-travel related policies that can mitigate infection spread. 

In this paper, we discuss the formulation of a multiscale model combining social-force based pedestrian 

movement with a population level stochastic infection transmission dynamics framework. We first formulate social 

force model for pedestrian movement incorporating collision avoidance and line forming. We then integrate this model 

with a stochastic susceptible-Infected infection transmission model. The model is then applied to study the infection  
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transmission at the airport gate and within airplane for the transmission of Ebola and SARS infections through casual 

contacts. 

 

MODEL FORMULATION 

In our problem setting, we model the movement of pedestrian particles based on a force-field approach 

proposed by Helbing et al. (1995) which captures the actual interaction of pedestrians with their environment in real 

life situations.1 While heading towards a designated destination, the behavior of an individual is influenced by his 

inclination to move effectively towards his targeted terminus. Stationary crowds or physical barriers obstructing the 

course of motion change the direction and reduce the speed of the pedestrians. In situations like boarding at an airport 

gate, we need to consider movement of pedestrians in a line, wherein the speed of pedestrian movement is heavily 

dependent upon speed of other pedestrians in front of them in a line.  

Considering the self-propelled pedestrian Pi as a point mass mi in a two dimensional space, the net resultant 

force 𝐹𝑖
⃗⃗   on the particle resulting in motion can be expressed by:  

𝐹𝑖
⃗⃗    = ∑𝑓𝑖⃗⃗     =  𝑓𝑖𝑖𝑛𝑡⃗⃗ ⃗⃗ ⃗⃗  ⃗   + 𝑓𝑖

𝑝𝑒𝑑⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗  = 𝑚𝑖 𝑎𝑖⃗⃗  ⃗ (1) 

Where 𝑓𝑖𝑖𝑛𝑡⃗⃗ ⃗⃗ ⃗⃗  ⃗ is the intention force motivating the pedestrian to pursue his track despite the fact that a resulting opposing 

force 𝑓𝑖
𝑝𝑒𝑑⃗⃗ ⃗⃗⃗⃗ ⃗⃗  ⃗ is exerted by the surrounding to delay his locomotion. 𝑎𝑖⃗⃗  ⃗ is the acceleration vector of particle “i”. 

The force 𝑓𝑖𝑖𝑛𝑡⃗⃗ ⃗⃗ ⃗⃗  ⃗ in the motion direction 𝑒�̂� is the rate of change of momentum within a time interval (step) 𝜏 and is 

defined by: 

𝑓𝑖
𝑖𝑛𝑡⃗⃗ ⃗⃗ ⃗⃗  ⃗  = 𝑓𝑖𝑖𝑛𝑡  𝑒�̂�  = 𝑚𝑖( 

∆𝑣⃗⃗⃗⃗  ⃗

𝜏
 ) = 𝑚𝑖 ( 

𝑣0𝑖(𝑡)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   − 𝑣𝑖(𝑡)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  

𝜏
 ) = 𝑚𝑖 ( 

𝑣0𝑖(𝑡)−𝑣𝑖(𝑡)

𝜏
 ) 𝑒�̂� (2) 

Here, 𝑣𝑖(𝑡)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ designates the actual instantaneous velocity of pedestrian Pi and is characterized by its magnitude and its 

anticipated orientation. To predict collision avoidance, the expression of the desired velocity of navigation 𝑣0𝑖(𝑡)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ 

depends on each individual in motion, his position in the crowd and the foremost direction of movement in the hallway 

of interest at every time step. Consider the cases of a walking passenger in a crowd. Before deciding the path to his  

1. Helbing, Dirk, and Peter Molnar. "Social force model for pedestrian dynamics." Physical review E 51, no. 5 (1995): 
4282. 



destination, the pedestrian scans his close surrounding within a radius (cutoff distance) labeled by 𝛿𝑐𝑢𝑡𝑜𝑓𝑓 and is given 

by: 

𝛿𝑐𝑢𝑡𝑜𝑓𝑓 =  ɳ . 𝛿  (3) 

Where ɳ is a positive decimal number and  𝛿 is the minimum proximity distance at which two walking individuals 

can come close to each other before coming to halt. The instantaneous velocity vector is evaluated based on the two 

following cases: 

Case 1 - Line forming: The pedestrian can move in the direction of motion assigned to the hallway where he is located 

at. Let 𝑒1̂ and 𝑒�̂� denote the unit vectors of directions attributed to the hallway and the pedestrian respectively. Since 

the pedestrian Pi is not impeded by any obstruction, 𝑒1̂ is the same as 𝑒�̂� as shown in Figure 1. Therefore, his desired 

speed at time t, 𝑣0𝑖(𝑡)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ , is obtained from the relation: 

𝑣0𝑖(𝑡)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ =  𝑣0𝑖(𝑡). 𝑒�̂�  =  𝑣0𝑖(𝑡). 𝑒1̂ = (𝑣𝐴 + 𝛾𝑖𝑣𝐵)(1 −
𝛿

‖𝑟𝑖⃗⃗⃗  −𝑟𝑗⃗⃗  ⃗‖
 ) . 𝑒1̂ (4) 

The vector positions of pedestrian Pi and the stationary traveler Pj in his way are denoted by 𝑟𝑖⃗⃗  and 𝑟�⃗⃗�  respectively, and 

are issued from the origin of the coordinate system of the plane of motion. (𝑣𝐴 + 𝛾𝑖𝑣𝐵) accounts for the ultimate 

desired speed ranging from 𝑣𝐴 to (𝑣𝐴 + 𝑣𝐵) adjusted for the upcoming obstructions within a distance δ. 𝛾𝑖 is a positive 

random variable less than unity attributed to pedestrian “i” considering the factors that can affect his mobility such as 

the age, sex, body type, health condition, etc. 

In particular, when the inactive traveler Pj is distant from traveler Pi in such a way that the latter’s motion is not affected 

(‖𝑟𝑖⃗⃗ − 𝑟�⃗⃗� ‖ ≫ δ) then, equation (4) reduces to: 

𝑣0𝑖(𝑡)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ =  𝑣0𝑖(𝑡). 𝑒�̂�  =  𝑣0𝑖(𝑡). 𝑒1̂ = (𝑣𝐴 + 𝛾𝑖𝑣𝐵). 𝑒1̂ (5) 

In addition when a pedestrian joins a line his desired velocity and thereby the intention force (𝑓𝑖𝑖𝑛𝑡⃗⃗ ⃗⃗ ⃗⃗  ⃗ ) reduces according 

to equation (4).   

Case 2- Collision avoidance: The pedestrian is impeded by obstructions in his desired direction of motion as shown 

in Figure 2. Thus, a curved deviation of the trajectory is required. Here, the walking traveler has to steer in such a way 

that he keeps moving forward towards his destination, indeed he makes a lateral motion to escape from the stationary 

members in the horde. Then, the pedestrian’s desired velocity is expressed by: 



𝑣0𝑖(𝑡)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ =  𝑣0𝑖(𝑡). 𝑒𝑣�̂� = (𝑣𝐴 + 𝛾𝑖𝑣𝐵)(1 −
𝛿

min(‖𝑟𝑖⃗⃗⃗  −𝑟𝑗⃗⃗  ⃗‖,𝑗≠𝑖)
 ) . 𝑒𝑣�̂� (6) 

The expression of the velocity direction 𝑒𝑣�̂� , in unit vector notation, is written as: 

𝑒�̂� = 𝑐𝑜𝑠 (𝛼𝑖)𝑖̂ + sin (𝛼𝑖)𝑗̂ (7) 

And 𝛼𝑖 is an arbitrary angle alternating between 𝜃1 and 𝜃2 and is expressed by: 

𝛼𝑖 = 𝜃1 + 𝛿𝑖 . 𝜃2  ; 0 < 𝛿𝑖 < 1 (8) 

In the course of embarkation and deplaning, we have to insure impenetrability of the particles. This is achieved by the 

repulsive force 𝑓𝑖
𝑝𝑒𝑑⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗  and is obtained from the gradient of the repulsive term in Lennard-Jones’ potential as follows: 

𝑓𝑖
𝑝𝑒𝑑⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ =  ∑ �⃗�  [ 𝜖 (

𝜎

𝑟𝑖𝑙
)12

𝑖≠𝑙

] (9) 

Where 𝜖 and 𝜎 are repulsive force field parameters (𝜖 = 16, 𝜎 = 0.86𝑚) and 𝑟𝑖𝑙is the distance between the ith and the 

lth pedestrian. The second order ordinary differential equation (1) is solved by means of Nordsieck third order 

predictor-corrector integration method to compute the instantaneous displacement, speed and trajectory of every 

particle by extrapolating these entities at the next time step.  

The subsequent step involves determining the rate and extent of propagation of the viral infection among the 

travelers. The study of epidemics informs about how a disease propagates and what are the suitable policies to suppress 

or inhibit its outspread. Therefore, the Susceptible-Infected (SI) dynamic model 21 of an epidemic is employed for the 

purpose. We assume a population of size N consisting of I(t) infected and S(t) susceptibles at time t. A susceptible 

becomes infected when coming into direct contact with an infected. However, the newly infected cannot be infective 

during the start of the incubation period of the illness (there is no second reproduction of the illness). At a time t, N, 

I(t) and S(t) are related by: 

N = I(t) + S(t) (10) 

Moreover, the infection spread initiates due to the insertion of 𝑖𝑐0 infectives initially (𝑡0= 0) at their “c” days of 

infection. Thus, 

N = ∑ 𝑖𝑐
0𝑑

𝑐=1 + S(0) (11) 

21. Keeling, Matt J., and Pejman Rohani. Modeling infectious diseases in humans and animals. Princeton University 
Press, 2008. 



Where d is the extent of the illness post onset of the symptoms at day one. 

Let m be the total number of contacts per individual per time step and N the total population size. Assume the presence 

of a single infectious individual at 𝑐 days of infection. The probability that this infective meets other individuals is 

m/N. denote by 𝑃𝑐 the probability that a contact between a susceptible and an infective, whose age of infection is 𝜏 

days, results in infection of the susceptible. Using the axiom of conditional probability: 

P(contact and infection) = P (infection/contact) . P (contact) = 𝑃𝑐 . 𝑚
𝑁

 (12) 

The number of susceptibles infected by this infective is binomially distributed with parameters n= S(t-1), the number 

of susceptibles exposed to the contagion at time t, and p = 𝑃𝑐 . 𝑚
𝑁

 . In this situation, n is large and p is very small (below 

0.1). Accordingly, the Poisson distribution can be used to approximate the binomial distribution with mean 𝜆= n.p = 

S(t-1). 𝑃𝑐 . 𝑚
𝑁

 . 

For multiple infectious individuals at time t0=0, the number of newly infected by an ith infective at time t, a discrete 

variable is a Poisson probability distribution, with mean mi (t-1). pc .[Si (t-1)/N]. Therefore, the number of people 

infected at time t by all the infectives with an age of infection “c” is Poisson distributed with a 

mean∑ [ 𝑚𝑖(t − 1). 𝑝𝑐  . (𝑆𝑖  (t − 1)/N)]
𝑖𝑐
0

𝑖=1 . Summing all over the values of c, we obtain: 

I(t)~Poisson (∑ (∑ [ 𝑚𝑖(t − 1). 𝑝𝑐  . (𝑆𝑖  (t − 1)/N)]
𝑖𝑐
0

𝑖=1  )𝑑
𝑐=1 ) (13) 

Where 𝑚𝑖  is the number of contact of susceptibles with the ith infectious traveler and 𝑝𝑐  the infection transmission 

probability. 

 

RESULTS AND DISCUSSION 

During an epidemic outbreak, the prevalence of the disease in a large population relies on the ability of a 

pathogen to establish unrestrained reproductive infections. Consequently, disease control, suppression or prevention 

starts by determining the core of its initiation as well as the incidence, medium, range and probability of propagation. 

During the progression of illness, the variation of antigens in the blood serum can be captured, and it determines the 

severity of the patient’s situation. In this study, we refer to observations of the evolution of the antibodies since the 

onset of the symptoms till recovery to generate what is referred as infectivity profile. The probability of infection 



(𝑝𝑐) has a major influence on the findings as it determines the total of newly infected passengers who were exposed 

to the contamination within a suitable environment of propagation. The simulations to this problematic have been 

conducted for both Ebola and SARS since these contagions were previously encountered in air travel.  For Ebola, the 

infectivity profile in Figure 4 is acquired by the amount of RNA virus copies above the detection threshold in the 

blood serum. 22 The daily logarithmic amounts of RNA for fatal and non-fatal contagion are averaged along the 21 

days of illness period, then divided by the total to obtain the probability of infection at a designated day. Also, the 

viral gene expression of the nucleocapsid (N) protein, detected at different rates along the evolution of SARS is 

indicative of the possibility of transmission (Figure 5). 23 This infectivity data is combined with the number of contacts 

between pedestrians generated using the pedestrian moment model to assess the extent of disease propagation among 

the travelers onboard. 

The time evolution of pedestrian trajectories has been displayed for both ingress from a gate (Figure 6) and 

egress from an Airbus A320 carrier (Figure 7) respectively for comparison of outputs. During the enplaning, the 

trajectories of passengers, initially seated or standing in the departure lounge, heading to the passenger boarding bridge 

(PBB) and finding their assigned onboard seats, are modeled. In both scenarios, the instantaneous position and speed 

of each walking individual are obtained by solving equation (1) by means of a predictor-corrector numerical method. 

Many qualitative features of pedestrian movement are captured by the model. For instance, lane formation is observed 

in the hallways, in addition to reduced speed at bottlenecks where passengers from different seating zones merge and 

head to the airplane (Figure 6). Similar features are observed in egress when passengers walk out of their seats toward 

the aisle (Figure 7).  

In real life the identity of infectious individual is not known beforehand, therefore all the possible 

permutations of a single infective are run to estimate the mean of newly infected susceptibles denoted by 𝜆𝑖 where i 

ranges from 1 to the total passenger capacity of the aircraft. Due to the stochastic nature of the problem, we assume  

22. Towner, Jonathan S., Pierre E. Rollin, Daniel G. Bausch, Anthony Sanchez, Sharon M. Crary, Martin Vincent, 
William F. Lee et al. "Rapid diagnosis of Ebola hemorrhagic fever by reverse transcription-PCR in an outbreak setting 
and assessment of patient viral load as a predictor of outcome." Journal of virology 78, no. 8 (2004): 4330-4341. 

23. Zhao, Guo-ping. "SARS molecular epidemiology: a Chinese fairy tale of controlling an emerging zoonotic disease 
in the genomics era." Philosophical Transactions of the Royal Society of London B: Biological Sciences 362, no. 1482 
(2007): 1063-1081. 



that the number of newly infected travelers by a single infectious chosen randomly among the airplane passengers is 

Poisson distributed with mean 𝜆𝑖 at every simulation. After performing all the simulations in parallel, the effective 

probability of means is calculated. Then, using the Bayes’ theorem the probabilities are combined to generate the 

probability distributions in Figures (8, 9, 10 and 11).  

These plots (Figures 8-11) represent the probabilistic distribution of infected passengers who were closely 

exposed to Ebola and SARS viruses. These viral organisms are transmitted through direct contact or dispersion of 

particles exhaled from an infectious member by talking, coughing or sneezing, and remain sustained in the 

environment for a certain time before depositing and contaminating contiguous surfaces.24,25 Mangili and Gendreau 

(2005) indicate large droplet and airborne mechanisms are possibly highest risk transmission mechanisms during air 

travel.26  The transmission distance also depends on specific disease, for example, SARS has been transmitted by short 

range droplet based as well as longer range airborne mechanisms.27,28 Primary mode of transmission for Ebola is 

through contact droplets 29, but studies with monkeys indicate possible transfer through aerosols 24,30.  The size of 

these particles as well as the environmental condition play an important role in contagion dispersion. Small particles 

dispersed in aerosols transmit over large distances, for example, experiments indicate micrometer sized aerosol clouds  
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generated during cough traveling over 2 m.31,32 Smaller aerosols can be driven farther by ventilation or a freestream 

flowing from a high static pressure location to a lower pressure zone.33 Based on primary modes of transmission, 

coarse droplets for Ebola and aerosol for SARS we assume a radius of infection of 1.2m (48 in) for Ebola and 2.1m 

(84 in) for SARS. Note that infectivity profile for both viruses are quite close in values and less than 0.1, the selection 

of radii of infection makes a noticeable difference in the number of contacts and transmission. In Figure 8, we consider 

an infectious passenger at his first day is onboard among the susceptible population. Ebola records a peak of 2 newly 

infected passengers exposed to the virus, whereas this number increases to 5 for SARS due to the wider range of 

infectivity. Shifting the infectivity to its highest (day 3 for Ebola and day 4 or 5 for SARS) in Figure 9, the means of 

the Poisson distribution increases by one unit for both plots compared to those of Figure 8.  

Results for deplaning under similar conditions is shown in Figures 10 and 11. It can be noticed that the 

distribution of newly infected individuals behaves in the same way as that of Figures 8 and 9. However, the mean 

number of infected reduces to 1 and 2 respectively for Ebola and SARS. Egress phase is of a shorter period of time 

compared to boarding, therefore there are fewer contacts and lower number of infected.  

The objective of the pedestrian movement methodology is to mimic the actual comportment of pedestrians 

in an airport terminal. In this paper, we simulated a boarding process at the departure lounge and deplaning from 

airplane. The study can be expanded further to include the motion of pedestrians at the moment of arrival, passing by 

check-in, security and boarding, while accounting for uncertainty due to discretionary activities prior to boarding. 

Such simulations can be used to suggest effective travel strategies to suppress infection spread for contact based 

diseases. In addition, the multiscale model is general and can be applied to any directly transmitted disease and can 

be used to develop policies that mitigate infection spread under different conditions. 

 

 

 

 

31. Bourouiba, Lydia, Eline Dehandschoewercker, and John WM Bush. "Violent expiratory events: on coughing and 
sneezing." Journal of Fluid Mechanics 745 (2014): 537-563. 

32. Gupta, J. K., C‐H. Lin, and Q. Chen. "Flow dynamics and characterization of a cough." Indoor air 19, no. 6 (2009): 
517-525. 

33. Tang, J. W., Y. Li, I. Eames, P. K. S. Chan, and G. L. Ridgway. "Factors involved in the aerosol transmission of 
infection and control of ventilation in healthcare premises." Journal of Hospital Infection 64, no. 2 (2006): 100-114. 



SUMMARY 

A mathematical method is formulated to characterize infection spread at airport gates and in airplanes 

combining the pedestrian movement and stochastic infection dynamics models. Using the model, we studied the 

infection transmission for two pathological contagions, Ebola and SARS during airplane boarding and deplaning. We 

discuss the effect of infection radius and transmission mechanism on the spread of infection.   

Acknowledgements  

Funding from NSF PRAC grant and ERAU FIRST grant is gratefully acknowledged.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

Figure 1. The distribution of the stationary crowd around the traveler Pi walking in the same direction of preference 

of the hallway. 

 

 

Figure 2. The distribution of the stationary crowd obstructing the traveler Pi from walking in the direction of preference 

of the hallway. 



 

Figure 3. The deviation in direction of the desired velocity of pedestrian Pi in such a way to escape from the crowd 

between particles “j” and “k”. 

 

Figure 4. Infectivity profile along the days after inception of symptoms for SARS contagion 

 

Figure 5. Infection probability distribution versus the days after onset of symptoms for Ebola virus 



 

Figure 6. Simulation snapshot of an embarkation of an Airbus A320 from a departure lounge at different time steps 



 

Figure 7. Simulation snapshot of Airbus A320 deplaning at different time steps 

 

Figure 8. Infection profile at the first day post onset of symptoms during a random ingress for Ebola and SARS 
contagions 



 

Figure 9. Infection profile at the peak day post onset of symptoms during a random ingress for Ebola and SARS 

contagions 

 

Figure 10. Infection profile at the first day post onset of symptoms during deplaning from an Airbus A320 for Ebola 

and SARS contagions 



 

Figure 11. Infection profile at the peak day post onset of symptoms during deplaning from an Airbus A320 for Ebola 

and SARS contagions 


